

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102320103

Course Title: Design for Manufacture and Assembly

Type of Course:Program Elective I

Course Objectives:This subject is designed to develop the knowldege and skills to design/redesign a product for the ease of manufacturing and assembly by keeping in mind different aspects of geometric dimensioning, manufacturing, environment and various DFMA tools.

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)					
Locturo	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutorial	Practical		Theory	J/V/P*	Theory	J/V/P*	TOLAT
3	2	0	4	40/16	20/08	60/24	30/12	150/60

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours				
1	INTRODUCTION:	4				
	Introduction to DFMA: History of DFMA, Steps for applying DFMA during product					
	design, Advantages of applying DFMA during product design, Material Selection					
	and Mechanical Properties of materials, Product Life Cycle and DFMA					
2	GEOMETRIC DIMENSIONING AND TOLERANCES	4				
	Limits and Fits, tolerance Chains and identification of functionally important					
	dimensions, Dimensional chain analysis-equivalent tolerances method, equivalent					
	standard tolerance grade method, Dimensioning and Tolerancing considerations					
	for manufacturing and assembly as per Indian and ASME Standards					
3	DESIGN ASPECTS OF MANUFACTURING PROCESSES:	10				
	Review of Manufacturing Processes, Design for Casting, Design for Sheet Metal					
	Forming processes, Design for Bulk deformation processes, Design for Machining,					
	Design for Welding, Design for Powder Metallurgy, Design for Polymer Processing					
4	DESIGN FOR MANUAL ASSEMBLY:	12				
	General Guidelines for Manual Assembly, Development of systematic DFA					
	methodology, Assembly Efficiency, Classification system for Part handling,					
	Classification system for Manual Insertion and fastening, Boothroyd Dewhurst					
	method, theoretical minimum number of parts, Xerox producibility index (XPI)					
	method Estimation of insertion time, Reducing Disk-Assembly Problems, Effects of					
	Holding down, Manual Assembly Data base and design data sheets					

Page 1 of 4

5	DFMA TOOLS:	4			
	Application of tools like lean manufacturing, six sigma, poke-yoke, TPM, concurrent				
	engineering in the perspective of DFMA				
6	DESIGN FOR THE ENVIRONMENT:	5			
	Introduction, Environmental objectives, Global issues, Regional and local issues,				
	Basic DFE methods, Lifecycle assessment method, Techniques to reduce				
	environmental impact, Design to minimize material usage, Design for Disassembly,				
	Design for Failure				
7	Click or tap here to enter text.	Click			
8	Click or tap here to enter text.				
9	Click or tap here to enter text.				
10	Click or tap here to enter text.	Click			
11	Click or tap here to enter text.	Click			
12	Click or tap here to enter text.	Click			
13	Click or tap here to enter text.	Click			
14	Click or tap here to enter text.				
15	Click or tap here to enter text.	Click			

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks				y Mark	S	R : Remembering; U : Understanding; A : Application,
R	U	Α	Ν	Ε	С	N: Analyze; E: Evaluate; C: Create
15	20	15	15	20	15	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Materials and Design - the art and science of material selection in product design, M F Ashby and K Johnson, Butterworth-Heinemann.
2	Engineering Design - a materials and processing approach, G Dieter, McGraw Hill.
3	Material Selection in Mechanical Design, M F Ashby, Butterworth-Heinemann.
4	Mechanical Behavior of Materials, T H Courtney, McGraw Hill.
5	Process selection: from design to manufacture, K G Swift and J D Booker, London, Arnold.
6	Engineering Optimization: theory and practice, S S Rao, John Wiley.
7	Product design for manufacture and assembly, John Wiley, G Boothroyd, P Dewhurst and W Knight, Marcel Dekkar.
8	Handbook for Product Design for Manufacture, J G Bralla, McGraw Hill.
9	Which Process – an introduction to welding and related processes and guide to their selection, Houldcroft, Abington Pub.
10	ASTM Design handbook.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students will apply various principles of DFMA for improving quality	40 %
	aspects of a product	
CO-2	Students will have knowledge of different considerations for different	20 %
	manufacturing processes like casting, machining, welding, forming etc.	
CO-3	Students will be able to demonstrate skills in new product development	40 %
	and optimization of the same for different issues related to it.	
CO-4	Click or tap here to enter text.	Click
CO-5	Click or tap here to enter text.	Click
CO-6	Click or tap here to enter text.	Click
CO-7	Click or tap here to enter text.	Click
CO-8	Click or tap here to enter text.	Click
CO-9	Click or tap here to enter text.	Click
CO-10	Click or tap here to enter text.	Click

Page 3 of 4

List of Practicals / Tutorials:

Click or tap here to enter text.

1	To identify and understand various steps of DFMA.					
2	To understand role of DFMA in product design.					
3	To study concept of limits, fits and tolerances.					
4	To understand Indian and ASME standards for dimensioning and tolerancing considerations.					
5	To study design considerations of casting, welding and forming.					
6	To study design considerations of machining, bulk deformation processes and polymer					
	processing.					
7	To study the various considerations for manual insertion and fastening in assembly.					
8	To determine minimum number of parts for a given assembly using Boothroyd Charts.					
9	To study and apply various tools in perspective to DFMA.					
10	To understand Design for environment and asses lifecycle of a product.					
11	Click or tap here to enter text.					
12	Click or tap here to enter text.					
13	Click or tap here to enter text.					
14	Click or tap here to enter text.					
15	Click or tap here to enter text.					
_						

Sup	Supplementary learning Material:		
1	1 Click or tap here to enter text.		
2	Click or tap here to enter text.		
3	Click or tap here to enter text.		
4	Click or tap here to enter text.		
5	Click or tap here to enter text.		

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		

Page 4 of 4